

Long-term effect of chito-oligosaccharide application on strigolactone biosynthesis and accommodation of arbuscular mycprrhizal fungi

Arbuscular mycorrhizas an ancient alliance

Arbuscule-like structure in the rhizome of Aglaophyton, Rhynia

400 MYA

- Glomeromycotina
- 72% of plant species

Arbuscular mycorrhizal fungi trade **soil nutrients** for **carbon**

Interest as biofertilizers

Mostly **P**, but also **N**, **water**, **micronutrients** present in soil...

stress

Arbuscular mycorrhizas promote **growth** boost plant **resistance** to biotic and abiotic **stresses** improve **nutritional** quality

A chemical dialogue

Genre et al., 2020 Nat Rev Microbiol

Myc factors

CSP

golactone

An applicative potential

Myc

arb

VC

VC

Myc + CO

Medicago truncatula

Volpe et al., 2020 Carbohydrate Polymers

CO application boosts AM colonization

CO effects on AM development depend on DMI3

Promotion of AM colonization in WT *M. truncatula*

No change in *dmi3-1* mycorrhizal phenotype

How does CO perception promote AM? What are the molecular/cellular mechanisms involved?

previous studies on early gene regulation by Myc factors We observe a major effect several weeks after the treatment

RNAseq analysis of gene regulation in roots

Regulated genes

RNAseq analysis - GENERAL TRENDS: PCA

RNAseq analysis - GENERAL TRENDS: DEGs

RNAseq analysis - GENE ONTOLOGY classes MYC vs CTR // CTR+CO vs CTR

RNAseq analysis - GENE ONTOLOGY classes MYC vs CTR

MYC+CO vs CTR

RNAseq analysis - GENE ONTOLOGY classes

MYC+CO vs MYC

CO-Regulated pathways - STRIGOLACTONE biosynthesis and transport

CO-Regulated pathways - FUNGAL ACCOMMODATION

Targeted treatment and sampling - 6 hour treatment with COs

Early response to COs

Targeted inoculation + COs

Root organ cultures are grown in a petri dish

inoculated with AM spores (Gigaspora margarita)

covered with a few drops of 1mg/I CO solution and a translucent film

--> Live imaging of hyphopodium-contacted cells in confocal microscopy

Targeted inoculation + COs

No ER aggregation

Prominent ER aggregation

Cells with conspicuous ER aggregations (%)

CO treatment stimulates PPA-like aggregations in the vicinity of hyphopodia

Senescent

Mature

Developing

Intermediate

Conclusions

Thank you

Consolata Siniscalco Ludovica Oddi Luca Battaglini Vanda Malfatto Gennaro Carotenuto Lavinia Cagnina Carlotta Bergero Josette Clos

Marco Bergese

AM FOR Quality

Veronica Volpe Teresa Mazzarella

Matteo Chialva

DBios

Andrea Crosino

Lorenzo Costamagna

Miriana Bortolot

Wouter Kohlen

Erik Limpens

